
SYNTHESIS, BIOLOGICAL EVALUATION, AND DOCKING STUDY OF NOVEL 2-PHENYL-1- BENZOPYRAN-4-ONE DERIVATIVES - AS A POTENT CYCLOOXYGENASE-2 INHIBITOR
Author(s) -
Kiruthiga Natarajan,
Prabha Thangavelu,
Selvinthanuja Chellappa,
Srinivasan Kulandaivel,
T Sivakumar
Publication year - 2019
Publication title -
asian journal of pharmaceutical and clinical research
Language(s) - English
Resource type - Journals
eISSN - 2455-3891
pISSN - 0974-2441
DOI - 10.22159/ajpcr.2019.v12i3.30466
Subject(s) - chemistry , cyclooxygenase , flavones , docking (animal) , in vitro , anti inflammatory , enzyme , antioxidant , in silico , stereochemistry , isoxazole , oxidative stress , biochemistry , pharmacology , medicine , nursing , chromatography , gene
Objective: The inflammation and oxidative stress were related together in the generation of reactive oxygen species, which is responsible for the enhancement of inflammation associated with various chronic diseases.
Methods: The aim of this study is to synthezise and characterizes the flavones (2-phenyl-1-benzopyran-4-one) derivatives and analyzed by their docking hypothetical data as an effective anti-inflammatory mediator against cyclooxygenase-2 (COX-2) enzyme. Further, the evaluation of various in vitro antioxidant and anti-inflammatory studies was carried out.
Results: The 10 compounds were synthesized and characterized by ultraviolet, infrared, nuclear magnetic resonance, and mass spectroscopic techniques. The docking data results of these 10 flavones derivatives against COX-2 enzymes (Protein Data Bank ID: 3LN1) showed the binding energy ranging between −5.53 kcal/mol and −7.02 kcal/mol when compared with that of the standard diclofenac (−6.34 kcal/mol). The in vitro studies suggest that the lipophilic character of the side chain donor, along with the hydroxyl substituted flavones found to have significant half maximal inhibitory concentration values.
Conclusion: Based on these in silico and in vitro evaluation results, these synthesized compounds could act as a promising inhibitor to target the COX- 2 enzyme. Hence, those compounds were effective in the management of chronic diseases by exhibits free radical scavenging and anti-inflammatory property.