
ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF AMLODIPINE IN HUMAN PLASMA USING LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY/MASS SPECTROMETRY
Author(s) -
Akiful Haque M,
Shanthi Priya D K,
Dibyalochan Mohanty,
Vasudha Bakshi,
Narender Boggula
Publication year - 2018
Publication title -
asian journal of pharmaceutical and clinical research
Language(s) - English
Resource type - Journals
eISSN - 2455-3891
pISSN - 0974-2441
DOI - 10.22159/ajpcr.2018.v11i7.25431
Subject(s) - amlodipine , chromatography , chemistry , ammonium acetate , mass spectrometry , extraction (chemistry) , formic acid , high performance liquid chromatography , liquid chromatography–mass spectrometry , detection limit , selected reaction monitoring , analytical chemistry (journal) , tandem mass spectrometry , medicine , blood pressure , radiology
Objective: The objective of the present investigation was to develop a novel, simple, and economic method for the estimation of amlodipine in positive ion mode in human plasma using amlodipine maleate d4 as an internal standard.Methods: The chromatographic separation was performed on Zorbax SB, C18, 50 mm*4.6 mm, and 3.5 mm. The mobile phase was prepared with a mixture of 5 mm ammonium acetate in 0.1% formic acid: High performance liquid chromatographic (HPLC) grade methanol:HPLC grade acetonitrile (40:30:30) that run isocratically at the flow rate of 0.700 ml/min and run time at 2.50 min.Results: The analytical method is valid for the estimation of amlodipine, in human plasma over a range of 0.100 ng/ml–9.990 ng/ml with the detection of amlodipine m/z - 409.10 (parent) and 238.00 (product), and internal standard Amlodipine Maleate d4 m/z - 413.20 (parent), and 238.00 (product) in positive ion mode. The results of carryover test, matrix effect, linearity, precision and accuracy, stabilities, dilution integrity, and run size evaluation test presented in this report are within the acceptance range.Conclusion: A sensitive method for the separation and determination of amlodipine in plasma has been developed based on solid-phase extraction with disposable extraction cartridges in combination with LC and mass spectrophotometers (MS/MS).