
AN IN SILICO STUDY OF NARINGENIN-MEDIATED NEUROPROTECTION IN PARKINSON’S DISEASE
Author(s) -
Saurabh Kumar Jha,
Pravir Kumar
Publication year - 2017
Publication title -
asian journal of pharmaceutical and clinical research
Language(s) - English
Resource type - Journals
eISSN - 2455-3891
pISSN - 0974-2441
DOI - 10.22159/ajpcr.2017.v10i8.18709
Subject(s) - naringenin , in silico , ubiquitin ligase , docking (animal) , ramachandran plot , autodock , chemistry , homology modeling , parkinson's disease , virtual screening , lipinski's rule of five , neuroprotection , computational biology , biochemistry , ubiquitin , pharmacology , drug discovery , biology , protein structure , enzyme , medicine , disease , nursing , flavonoid , pathology , gene , antioxidant
Objective: Naringenin is a dietary biomolecule with broad spectrum of activities which protects neurons from various neurotoxic insults and improves cognition and motor function in neurodegenerative diseases. DJ-1 has both, ubiquitin E3 ligase as well as chaperonic activity, and loss of ubiquitin E3 ligase activity of DJ-1 has been found to be associated with familial Parkinson’s disease (PD). Naringenin induced E3 ligase activity of DJ-1 which can have possible clinical relevance in PD.Methods: Various in silico parameters such as phylogenetic analysis, homology modeling, active site prediction, and molecular docking studies using AutoDock 4.2.1 and LIGPLOT1.4.5 were carried out.Results: Three-dimensional structure of DJ-1 was generated and Ramachandran plot was obtained for quality assessment. RAMPAGE displayed 99.5% of residues in the most favored regions. 0% residues in additionally allowed and 0.5% disallowed regions of DJ-1 protein. Further, initial screenings of the molecules were done based on Lipinski’s rule of five. CastP server used to predict the ligand binding site suggests that this protein can be utilized as a potential drug target. Finally, we have found naringenin to be most effective among four biomolecules in modulating DJ-1 based on minimum inhibition constant, Ki, and highest negative free energy of binding with maximum interacting surface area in the course of docking studies.Conclusion: Our study suggests that based on different in silico parameters and molecular docking studies, naringenin can provide a new avenue for PD therapeutics.