
EFFECT OF CE3+ METAL IONS ON THE ANTIBACTERIAL AND ANTICANCER ACTIVITY OF ZINC OXIDE NANOPARTICLES PREPARED BY COPRECIPITATION METHOD
Author(s) -
C. Theivarasu,
Indumathi Thangavelu
Publication year - 2017
Publication title -
asian journal of pharmaceutical and clinical research
Language(s) - English
Resource type - Journals
eISSN - 2455-3891
pISSN - 0974-2441
DOI - 10.22159/ajpcr.2017.v10i3.16350
Subject(s) - coprecipitation , antibacterial activity , zinc , nuclear chemistry , nanoparticle , chemistry , materials science , inorganic chemistry , nanotechnology , bacteria , organic chemistry , biology , genetics
Objective: This study was undertaken to know about the antibacterial and anticancer activity of synthesized zinc oxide (ZnO) nanoparticles (NPs).Methods: The ZnO NPs and different concentration of Ce3+ (0.05M, 0.10M, and 0.15M)-doped ZnO NPs were synthesized by coprecipitation method.The synthesized nanoparticles were analyzed by X-ray diffraction (XRD) and HRSEM. The antibacterial studies were performed against a set ofbacterial strains as Gram-positive bacteria (Streptococcus aureus and Streptococcus pneumonia) and Gram-negative (Escherichia coli, Pseudomonasaeruginosa, Proteus vulgaris, Klebsiella pneumonia, and Shigella dysenteriae) bacteria. The cytotoxic effect of ZnO and Ce-doped ZnO was analyzed incultured (A549) human lung cancer cell line.Result: The XRD studies showed the wurtzite structure of nanoparticles. HRSEM analysis showed the spherical shape of ZnO and Ce-doped ZnO. TheZn0.85Ce0.15O NPs possessed more antibacterial effect as compared to the other ZnO and Ce-doped ZnO NPs. The Zn0.90Ce0.10O NPs created the highestcytotoxicity activity. With respect to cell death, as low a concentration of 68±0.05 μg/ml of Zn0.90Ce0.10O NPs was good enough to cause loss of viabilityof 50% of the cell as compared to ZnO and Zn1-xCexO (x=0.05 and 0.15) NPs.Conclusion: Results from this work concluded that Zn0.85Ce0.15O and Zn0.90Ce0.10O NPs possess antibacterial and anticancer activity, respectively.Keywords: Zinc oxide nanoparticles, Coprecipitation method, Antibacterial activity and anticancer activity, Human lung cancer cell line.