z-logo
open-access-imgOpen Access
GREEN SYNTHESIS OF SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLE FROM FICUS CARICA FRUIT EXTRACT, CHARACTERIZATION STUDIES AND ITS APPLICATION ON DYE DEGRADATION STUDIES
Author(s) -
Kirubanandan Shanmugam,
P. Tharunya,
Subha,
S Sandhaya,
S. Renganathan
Publication year - 2017
Publication title -
asian journal of pharmaceutical and clinical research
Language(s) - English
Resource type - Journals
eISSN - 2455-3891
pISSN - 0974-2441
DOI - 10.22159/ajpcr.2017.v10i3.15538
Subject(s) - carica , ficus , ferrous , chemistry , nuclear chemistry , superparamagnetism , nanoparticle , fourier transform infrared spectroscopy , degradation (telecommunications) , materials science , chemical engineering , nanotechnology , organic chemistry , botany , telecommunications , physics , magnetization , quantum mechanics , magnetic field , computer science , engineering , biology
Objective: The synthesis of nanoparticles (NPs) has become a matter of great interest in recent times due to their various advantageous propertiesand applications in a variety of fields. Metal NPs are being increasingly used in many sectors, and there is growing interest in the biological andenvironmental safety of their production.Methods: In this study, iron oxide NPs (Fe3O4-NPs) were synthesized from fruits of Ficus carica using a rapid, single step and completely greenbiosynthetic method by reduction of ferrous sulfate solution with F. carica ethanolic extract. The prepared Fe3O4-NPs were investigated by X-raydiffraction, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy.Results: The report emphasizes the effect of superparamagnetic Fe3O4-NPs on the degradation rate of hazardous dyes acid blue.Conclusion: To conclude, Fe3O4-NPs were prepared from fruits of F. carica using a rapid, single step and completely green biosynthetic method byreduction of ferrous sulfate solution with F. carica ethanolic extract.Keywords: Ficus carica, Ethanolic extract, Reduction, Ferrous sulfate, Superparamagnetic iron oxide nano particles, Dye degradation. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here