
Simulation of a Self-Balancing Platform on the Mobile Car
Author(s) -
Bushra Amer Tawfeeq,
Maher Yahya Salloom,
Ahmed Alkamachi
Publication year - 2021
Publication title -
al-khwarizmi engineering journal/al-khwarizmi engineering journal
Language(s) - English
Resource type - Journals
eISSN - 2312-0789
pISSN - 1818-1171
DOI - 10.22153/kej.2021.09.003
Subject(s) - pid controller , matlab , controller (irrigation) , simulation , computer science , control theory (sociology) , tilt (camera) , steering wheel , control engineering , engineering , automotive engineering , control (management) , mechanical engineering , operating system , temperature control , agronomy , artificial intelligence , biology
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-derivative (PID) controller to maintain the platform leveled and compensate for any road disturbances. Several road disturbances scenarios were designed in the x-axis, y-axis, or both axis (the pitch and roll angles) to examine the controller effectiveness. The simulation results indicate that that the platform completed self-balancing under the effect of disturbance (10° and -10°) on the X-axis, Y-axis, and both axes in less than two milliseconds. Therefore, a proposed self-balancing platform's simulated model has a high self-balancing accuracy and meets operational requirements despite its simple design.