z-logo
open-access-imgOpen Access
Selective Solid-Phase Extraction of Meropenem from Human Blood Plasma Using a Molecularly Imprinted Polymer
Author(s) -
Lasmaryna Sirumapea,
Muhammad Ali Zulfikar,
Muhammad Bachri Amran,
Anita Alni
Publication year - 2021
Publication title -
indonesian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 14
eISSN - 2460-1578
pISSN - 1411-9420
DOI - 10.22146/ijc.64025
Subject(s) - molecularly imprinted polymer , chemistry , meropenem , ethylene glycol dimethacrylate , thermogravimetric analysis , methacrylic acid , solid phase extraction , benzoyl peroxide , adsorption , nuclear chemistry , bulk polymerization , precipitation polymerization , polymerization , differential scanning calorimetry , polymer , chromatography , extraction (chemistry) , radical polymerization , organic chemistry , selectivity , biochemistry , antibiotics , antibiotic resistance , catalysis , thermodynamics , physics
This study employed a selective and high adsorption performance for meropenem. Molecularly imprinted polymer for meropenem (MeIP) as the selective sorbent was prepared through a bulk polymerization reaction. Methacrylic acid, ethylene glycol dimethacrylate, benzoyl peroxide, and dimethyl sulfoxide were applied as functional monomer, crosslinker agent, initiator, and solvent, respectively. Scanning electron microscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, and Fourier transform infrared spectroscopy were used to characterize the morphology, pore size, and structure of imprinted polymers. The maximum adsorption capacity was achieved at pH = 3, after 4 h contacted, under 150 rpm, and 25 mg of polymer applied. The maximum adsorption capacity of MeIP for meropenem was 51.963 mg/L; the synthesized polymer had superior selectivity to meropenem compared to that of the other antibiotics (imprinting factor, IF = 2.58). Furthermore, the thermodynamic and kinetic analyses indicated that the results were in accord with the Freundlich model and the pseudo-second-order kinetic model, respectively. MeIP was selective in batch adsorption, and molecularly imprinted solid-phase extraction protocols were selective to meropenem. It was then applied to analyze meropenem in human blood plasma and resulted in 78.52 ± 2.71 of recovery.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom