z-logo
open-access-imgOpen Access
Preparation of Ammonia Dealuminated Metakaolinite and Its Adsorption against Bixin
Author(s) -
Winda Rahmalia,
Jean-Charles Fabre,
Thamrin Usman,
Zéphirin Mouloungui
Publication year - 2020
Publication title -
indonesian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 14
eISSN - 2460-1578
pISSN - 1411-9420
DOI - 10.22146/ijc.44706
Subject(s) - kaolinite , adsorption , fourier transform infrared spectroscopy , nuclear chemistry , specific surface area , langmuir adsorption model , chemistry , bet theory , scanning electron microscope , materials science , mineralogy , chemical engineering , catalysis , organic chemistry , composite material , engineering
This study aims to prepare dealuminated metakaolinite which has a high surface area by using NH4OH as an activator. The natural kaolinite sample was treated at 600 °C for 6 h in order to obtain metakaolinite. A dealuminated metakaolinite was then prepared by the repeated activation method using concentrated ammonia (5 M NH4OH) at room temperature. Depending on the nature of each type of material, natural kaolinite, NH4OH treated kaolinite, metakaolinite and NH4OH treated metakaolinite were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET-N2) measurements. XRD and FTIR results confirmed that structural transformation from kaolinite to metakaolinite had occurred. According to SEM-EDS data, the activation of metakaolinite by NH4OH allowed the dealumination of metakaolinite. The increase in the Si/Al ratio was almost twice as high as in kaolinite. BET-N2 analysis showed that the specific surface area and the total pore volume increased significantly after activation. Its adsorption properties were tested against bixin. Bixin adsorption on dealuminated metakaolinite followed pseudo-second order kinetic where k2 = 0.20 g/mg min. The adsorption isotherm followed the Langmuir model where qm = 0.72 mg/g.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here