z-logo
open-access-imgOpen Access
STUDY ON THE RATE OF REDUCTION OF Cr(VI) TO Cr(III) BY HUMIC ACID USING CONTINUM MULTICOMPONENT MODEL
Author(s) -
Uripto Trisno Santoso,
Herdiansyah Herdiansyah,
Wega Trisunaryanti,
Sri Juari Santosa
Publication year - 2010
Publication title -
indonesian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.273
H-Index - 14
eISSN - 2460-1578
pISSN - 1411-9420
DOI - 10.22146/ijc.21869
Subject(s) - chemistry , humic acid , nuclear chemistry , rate equation , analytical chemistry (journal) , chromatography , kinetics , organic chemistry , fertilizer , physics , quantum mechanics
The objective of this study is to develop a rate equation for reduction of Cr(VI) by humic acid  (HA) using a continuum multicomponent model. HA was extracted from peat soil samples in Gambut Subdistrict, South Kalimantan. Parameters influencing the rate of reduction, i.e., medium acidity ([H+]), as well as initial humic acid concentrations ([HA]o) and initial Cr(VI) concentrations ([Cr(VI)]o) were critically evaluated. Experiments were performed in triplicate tests. Aliquots of stock solution containing 100 mg/L HA were equilibrated for 24 h at pH 1.5, 2.05, 3.2, 5.6, and 6.5 before being spiked with 0.02 mM of Cr(VI). [Cr(VI)] was determined by 1,5-diphenylcarbazide spectrometric method. A similar set of rate experiments was conducted at a fixed pH of 1.5 and an [Cr(VI)]o of 0.02 mM and with [HA]o of 25, 50, 75, 100, 150, 200, and 250 mg/L. A third set of batch experiment was performed at pH 1.5, an [HA]o of 100 mg/L, and [Cr(VI)]o 0.01, 0.02, 0.05, 0.10, and 0.20 mM. The results showed that the rate of reduction cannot be adequately modeled by either a simple first- or second- order rate equation. A continum multicomponent model adequately describes the effect of solution parameters on the rates of Cr(VI) reduction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here