z-logo
open-access-imgOpen Access
Clinical Implementation of a Free-Breathing, Motion-Robust Dynamic Contrast-Enhanced MRI Protocol to Evaluate Pleural Tumors
Author(s) -
Thomas S.C. Ng,
Ravi Seethamraju,
Raphael Bueno,
Ritu R. Gill
Publication year - 2020
Publication title -
american journal of roentgenology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 196
eISSN - 1546-3141
pISSN - 0361-803X
DOI - 10.2214/ajr.19.21612
Subject(s) - medicine , image quality , dynamic contrast enhanced mri , nuclear medicine , displacement (psychology) , computer vision , artificial intelligence , radiology , magnetic resonance imaging , computer science , image (mathematics) , psychology , psychotherapist
OBJECTIVE. The purpose of this study was to develop a motion insensitive clinical dynamic contrast-enhanced MRI (DCE-MRI) protocol to assess the response of pleural tumors in clinical trials. MATERIALS AND METHODS. Thirty-two patients with pleura-based lesions were administered contrast material and imaged with gradient-recalled echo DCE-MRI sequence variants: either a traditional cartesian k-space acquisition (FLASH), a time-resolved imaging with stochastic trajectories acquisition (TWIST), or a radial stack-of-stars acquisition (radial) sequence in addition to other standard-of-care imaging sequences. Each image acquisition's sensitivity to motion was evaluated by comparing the motion of the thoracic border in 3D throughout the acquisition. One-way ANOVA was used to compare the image quality between different acquisitions. The 95% CIs were calculated for mean thoracic border displacement. The effects of motion on kinetic parameter estimation were explored with simulations according to clinically acquired data. RESULTS. Radial was the most motion-robust sequence with subvoxel mean displacement in the superior-inferior direction (0.4 ± 1.2 [SD] mm). FLASH showed intermediate displacement (4.6 ± 2.0 mm), whereas TWIST was most sensitive to motion (6.4 ± 3.4 mm). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the images acquired with the radial sequence were on par or better than the FLASH and TWIST sequences when reconstructed with an improved density compensation algorithm. Simulations showed that motion on scans showing pleural-based lesions can lead to markedly inaccurate kinetic parameter estimation and inappropriate kinetic model convergence within a nested model analysis. CONCLUSION. A practical radial k-space trajectory sequence that provides motion-insensitive pharmacokinetic parameters was incorporated as part of the DCE-MRI protocol of pleural tumors. Validation and usefulness in clinical trials assessing response to therapy is needed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here