z-logo
open-access-imgOpen Access
Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning
Author(s) -
Alvin Rajkomar,
Joanne W. L. Yim,
Kevin Grumbach,
Ami Parekh
Publication year - 2016
Publication title -
jmir medical informatics
Language(s) - English
Resource type - Journals
ISSN - 2291-9694
DOI - 10.2196/medinform.6530
Subject(s) - specialty , health care , electronic health record , primary care , medicine , weighting , medline , family medicine , political science , law , economics , radiology , economic growth
Background Characterizing patient complexity using granular electronic health record (EHR) data regularly available to health systems is necessary to optimize primary care processes at scale. Objective To characterize the utilization patterns of primary care patients and create weighted panel sizes for providers based on work required to care for patients with different patterns. Methods We used EHR data over a 2-year period from patients empaneled to primary care clinicians in a single academic health system, including their in-person encounter history and virtual encounters such as telephonic visits, electronic messaging, and care coordination with specialists. Using a combination of decision rules and k-means clustering, we identified clusters of patients with similar health care system activity. Phenotypes with basic demographic information were used to predict future health care utilization using log-linear models. Phenotypes were also used to calculate weighted panel sizes. Results We identified 7 primary care utilization phenotypes, which were characterized by various combinations of primary care and specialty usage and were deemed clinically distinct by primary care physicians. These phenotypes, combined with age-sex and primary payer variables, predicted future primary care utilization with R 2 of .394 and were used to create weighted panel sizes. Conclusions Individual patients’ health care utilization may be useful for classifying patients by primary care work effort and for predicting future primary care usage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here