z-logo
open-access-imgOpen Access
Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers
Author(s) -
Mohamed I Seedahmed,
Izabella Mogilnicka,
Siyang Zeng,
Gang Luo,
Mary A. Whooley,
Charles E. McCulloch,
Laura L. Koth,
Mehrdad Arjomandi
Publication year - 2022
Publication title -
jmir formative research
Language(s) - English
Resource type - Journals
ISSN - 2561-326X
DOI - 10.2196/31615
Subject(s) - sarcoidosis , veterans affairs , medicine , medical record , guideline , diagnosis code , algorithm , retrospective cohort study , pathology , computer science , population , environmental health
Background Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. Objective The aim of this study is to determine the statistical performance of using the International Classification of Diseases (ICD) diagnostic codes to identify patients with sarcoidosis in the EMR. Methods We used the ICD diagnostic codes to identify sarcoidosis cases by searching the EMRs of the San Francisco and Palo Alto Veterans Affairs medical centers and randomly selecting 200 patients. To improve the diagnostic accuracy of the computational algorithm in cases where histopathological data are unavailable, we developed an index of suspicion to identify cases with a high index of suspicion for sarcoidosis (confirmed and probable) based on clinical and radiographic features alone using the American Thoracic Society practice guideline. Through medical record review, we determined the positive predictive value (PPV) of diagnosing sarcoidosis by two computational methods: using ICD codes alone and using ICD codes plus the high index of suspicion. Results Among the 200 patients, 158 (79%) had a high index of suspicion for sarcoidosis. Of these 158 patients, 142 (89.9%) had documentation of nonnecrotizing granuloma, confirming biopsy-proven sarcoidosis. The PPV of using ICD codes alone was 79% (95% CI 78.6%-80.5%) for identifying sarcoidosis cases and 71% (95% CI 64.7%-77.3%) for identifying histopathologically confirmed sarcoidosis in the EMRs. The inclusion of the generated high index of suspicion to identify confirmed sarcoidosis cases increased the PPV significantly to 100% (95% CI 96.5%-100%). Histopathology documentation alone was 90% sensitive compared with high index of suspicion. Conclusions ICD codes are reasonable classifiers for identifying sarcoidosis cases within EMRs with a PPV of 79%. Using a computational algorithm to capture index of suspicion data elements could significantly improve the case-identification accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here