z-logo
open-access-imgOpen Access
An Exploration of e-Cigarette–Related Search Items on YouTube: Network Analysis
Author(s) -
Hassan Dashtian,
Dhiraj Murthy,
Grace Kong
Publication year - 2022
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/30679
Subject(s) - betweenness centrality , centrality , information retrieval , computer science , semantic search , social network (sociolinguistics) , search engine , social network analysis , meaning (existential) , social media , psychology , world wide web , mathematics , statistics , psychotherapist
Background e-Cigarette use among youth is high, which may be due in part to pro–e-cigarette content on social media such as YouTube. YouTube is also a valuable resource for learning about e-cigarette use, trends, marketing, and e-cigarette user perceptions. However, there is a lack of understanding on how similar e-cigarette–related search items result in similar or relatively mutually exclusive search results. This study uses novel methods to evaluate the relationship between e-cigarette–related search items and results. Objective The aim of this study is to apply network modeling and rule-based classification to characterize the relationships between e-cigarette–related search items on YouTube and gauge the level of importance of each search item as part of an e-cigarette information network on YouTube. Methods We used 16 fictitious YouTube profiles to retrieve 4201 distinct videos from 18 keywords related to e-cigarettes. We used network modeling to represent the relationships between the search items. Moreover, we developed a rule-based classification approach to classify videos. We used betweenness centrality (BC) and correlations between nodes (ie, search items) to help us gain knowledge of the underlying structure of the information network. Results By modeling search items and videos as a network, we observed that broad search items such as e-cig had the most connections to other search items, and specific search items such as cigalike had the least connections. Search items with similar words (eg, vape and vaping) and search items with similar meaning (eg, e-liquid and e-juice) yielded a high degree of connectedness. We also found that each node had 18 (SD 34.8) connections (common videos) on average. BC indicated that general search items such as electronic cigarette and vaping had high importance in the network (BC=0.00836). Our rule-based classification sorted videos into four categories: e-cigarette devices (34%-57%), cannabis vaping (16%-28%), e-liquid (14%-37%), and other (8%-22%). Conclusions Our findings indicate that search items on YouTube have unique relationships that vary in strength and importance. Our methods can not only be used to successfully identify the important, overlapping, and unique e-cigarette–related search items but also help determine which search items are more likely to act as a gateway to e-cigarette–related content.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here