z-logo
open-access-imgOpen Access
Monitoring COVID-19 on Social Media: Development of an End-to-End Natural Language Processing Pipeline Using a Novel Triage and Diagnosis Approach
Author(s) -
Abul Hasan,
Mark Levene,
David Weston,
Renate Fromson,
Nicolas Koslover,
Tamara Levene
Publication year - 2022
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/30397
Subject(s) - triage , social media , computer science , artificial intelligence , pipeline (software) , population , machine learning , natural language processing , data science , identification (biology) , medicine , world wide web , medical emergency , environmental health , programming language , botany , biology
Background The COVID-19 pandemic has created a pressing need for integrating information from disparate sources in order to assist decision makers. Social media is important in this respect; however, to make sense of the textual information it provides and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population. Here, we adopt a triage and diagnosis approach to analyzing social media posts using machine learning techniques for the purpose of disease detection and surveillance. We thus obtain useful prevalence and incidence statistics to identify disease symptoms and their severities, motivated by public health concerns. Objective This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts in order to provide researchers and public health practitioners with additional information on the symptoms, severity, and prevalence of the disease rather than to provide an actionable decision at the individual level. Methods The text processing pipeline first extracted COVID-19 symptoms and related concepts, such as severity, duration, negations, and body parts, from patients’ posts using conditional random fields. An unsupervised rule-based algorithm was then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations were subsequently used to construct 2 different vector representations of each post. These vectors were separately applied to build support vector machine learning models to triage patients into 3 categories and diagnose them for COVID-19. Results We reported macro- and microaveraged F1 scores in the range of 71%-96% and 61%-87%, respectively, for the triage and diagnosis of COVID-19 when the models were trained on human-labeled data. Our experimental results indicated that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. In addition, we highlighted important features uncovered by our diagnostic machine learning models and compared them with the most frequent symptoms revealed in another COVID-19 data set. In particular, we found that the most important features are not always the most frequent ones. Conclusions Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from social media natural language narratives, using a machine learning pipeline in order to provide information on the severity and prevalence of the disease for use within health surveillance systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here