z-logo
open-access-imgOpen Access
Deep Convolutional Neural Network–Based Computer-Aided Detection System for COVID-19 Using Multiple Lung Scans: Design and Implementation Study
Author(s) -
Mustafa Ghaderzadeh,
Farkhondeh Asadi,
Ramezan Jafari,
Davood Bashash,
Hassan Abolghasemi,
Mehrad Aria
Publication year - 2021
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/27468
Subject(s) - convolutional neural network , computer science , covid-19 , artificial intelligence , artificial neural network , medicine , pathology , disease , infectious disease (medical specialty) , outbreak
Background Owing to the COVID-19 pandemic and the imminent collapse of health care systems following the exhaustion of financial, hospital, and medicinal resources, the World Health Organization changed the alert level of the COVID-19 pandemic from high to very high. Meanwhile, more cost-effective and precise COVID-19 detection methods are being preferred worldwide. Objective Machine vision–based COVID-19 detection methods, especially deep learning as a diagnostic method in the early stages of the pandemic, have been assigned great importance during the pandemic. This study aimed to design a highly efficient computer-aided detection (CAD) system for COVID-19 by using a neural search architecture network (NASNet)–based algorithm. Methods NASNet, a state-of-the-art pretrained convolutional neural network for image feature extraction, was adopted to identify patients with COVID-19 in their early stages of the disease. A local data set, comprising 10,153 computed tomography scans of 190 patients with and 59 without COVID-19 was used. Results After fitting on the training data set, hyperparameter tuning, and topological alterations of the classifier block, the proposed NASNet-based model was evaluated on the test data set and yielded remarkable results. The proposed model's performance achieved a detection sensitivity, specificity, and accuracy of 0.999, 0.986, and 0.996, respectively. Conclusions The proposed model achieved acceptable results in the categorization of 2 data classes. Therefore, a CAD system was designed on the basis of this model for COVID-19 detection using multiple lung computed tomography scans. The system differentiated all COVID-19 cases from non–COVID-19 ones without any error in the application phase. Overall, the proposed deep learning–based CAD system can greatly help radiologists detect COVID-19 in its early stages. During the COVID-19 pandemic, the use of a CAD system as a screening tool would accelerate disease detection and prevent the loss of health care resources.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here