
Using Machine Learning–Based Approaches for the Detection and Classification of Human Papillomavirus Vaccine Misinformation: Infodemiology Study of Reddit Discussions
Author(s) -
Jingcheng Du,
Sharice Preston,
Hanxiao Sun,
Ross Shegog,
Rachel Cunningham,
Julie A. Boom,
Lara S. Savas,
Muhammad Amith,
Cui Tao
Publication year - 2021
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/26478
Subject(s) - misinformation , social media , computer science , artificial intelligence , identification (biology) , support vector machine , machine learning , convolutional neural network , random forest , world wide web , computer security , botany , biology
Background The rapid growth of social media as an information channel has made it possible to quickly spread inaccurate or false vaccine information, thus creating obstacles for vaccine promotion. Objective The aim of this study is to develop and evaluate an intelligent automated protocol for identifying and classifying human papillomavirus (HPV) vaccine misinformation on social media using machine learning (ML)–based methods. Methods Reddit posts (from 2007 to 2017, N=28,121) that contained keywords related to HPV vaccination were compiled. A random subset (2200/28,121, 7.82%) was manually labeled for misinformation and served as the gold standard corpus for evaluation. A total of 5 ML-based algorithms, including a support vector machine, logistic regression, extremely randomized trees, a convolutional neural network, and a recurrent neural network designed to identify vaccine misinformation, were evaluated for identification performance. Topic modeling was applied to identify the major categories associated with HPV vaccine misinformation. Results A convolutional neural network model achieved the highest area under the receiver operating characteristic curve of 0.7943. Of the 28,121 Reddit posts, 7207 (25.63%) were classified as vaccine misinformation, with discussions about general safety issues identified as the leading type of misinformed posts (2666/7207, 36.99%). Conclusions ML-based approaches are effective in the identification and classification of HPV vaccine misinformation on Reddit and may be generalizable to other social media platforms. ML-based methods may provide the capacity and utility to meet the challenge involved in intelligent automated monitoring and classification of public health misinformation on social media platforms. The timely identification of vaccine misinformation on the internet is the first step in misinformation correction and vaccine promotion.