
Artificial Intelligence for Skin Cancer Detection: Scoping Review
Author(s) -
Abdulrahman Takiddin,
Jens Schneider,
Yin Yang,
Mowafa Househ,
Mowafa Househ
Publication year - 2021
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/22934
Subject(s) - computer science , artificial intelligence , machine learning , data extraction , skin cancer , systematic review , deep learning , medline , cancer , data science , data mining , medicine , political science , law
Background Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, artificial intelligence (AI) tools are being used, including shallow and deep machine learning–based methodologies that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. Objective The aim of this study was to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examined the reliability of the selected papers by studying the correlation between the data set size and the number of diagnostic classes with the performance metrics used to evaluate the models. Methods We conducted a systematic search for papers using Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing Machinery Digital Library (ACM DL), and Ovid MEDLINE databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. The studies included in this scoping review had to fulfill several selection criteria: being specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were independently conducted by two reviewers. Extracted data were narratively synthesized, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. Results We retrieved 906 papers from the 3 databases, of which 53 were eligible for this review. Shallow AI-based techniques were used in 14 studies, and deep AI-based techniques were used in 39 studies. The studies used up to 11 evaluation metrics to assess the proposed models, where 39 studies used accuracy as the primary evaluation metric. Overall, studies that used smaller data sets reported higher accuracy. Conclusions This paper examined multiple AI-based skin cancer detection models. However, a direct comparison between methods was hindered by the varied use of different evaluation metrics and image types. Performance scores were affected by factors such as data set size, number of diagnostic classes, and techniques. Hence, the reliability of shallow and deep models with higher accuracy scores was questionable since they were trained and tested on relatively small data sets of a few diagnostic classes.