z-logo
open-access-imgOpen Access
Screening for Depression in Daily Life: Development and External Validation of a Prediction Model Based on Actigraphy and Experience Sampling Method
Author(s) -
Olga Minaeva,
Harriëtte Riese,
Femke Lamers,
Niki Antypa,
Marieke Wichers,
Sanne H. Booij
Publication year - 2020
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/22634
Subject(s) - actigraphy , discriminative model , receiver operating characteristic , logistic regression , experience sampling method , data set , set (abstract data type) , statistics , psychology , artificial intelligence , machine learning , medicine , computer science , mathematics , psychiatry , social psychology , programming language , insomnia
Background In many countries, depressed individuals often first visit primary care settings for consultation, but a considerable number of clinically depressed patients remain unidentified. Introducing additional screening tools may facilitate the diagnostic process. Objective This study aimed to examine whether experience sampling method (ESM)-based measures of depressive affect and behaviors can discriminate depressed from nondepressed individuals. In addition, the added value of actigraphy-based measures was examined. Methods We used data from 2 samples to develop and validate prediction models. The development data set included 14 days of ESM and continuous actigraphy of currently depressed (n=43) and nondepressed individuals (n=82). The validation data set included 30 days of ESM and continuous actigraphy of currently depressed (n=27) and nondepressed individuals (n=27). Backward stepwise logistic regression analysis was applied to build the prediction models. Performance of the models was assessed with goodness-of-fit indices, calibration curves, and discriminative ability (area under the receiver operating characteristic curve [AUC]). Results In the development data set, the discriminative ability was good for the actigraphy model (AUC=0.790) and excellent for both the ESM (AUC=0.991) and the combined-domains model (AUC=0.993). In the validation data set, the discriminative ability was reasonable for the actigraphy model (AUC=0.648) and excellent for both the ESM (AUC=0.891) and the combined-domains model (AUC=0.892). Conclusions ESM is a good diagnostic predictor and is easy to calculate, and it therefore holds promise for implementation in clinical practice. Actigraphy shows no added value to ESM as a diagnostic predictor but might still be useful when ESM use is restricted.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here