z-logo
open-access-imgOpen Access
Physiological State and Learning Ability of Students in Normal and Virtual Reality Conditions: Complexity-Based Analysis
Author(s) -
Mohammad Hossein Babini,
Vladimir Kulish,
Hamidreza Namazi
Publication year - 2020
Publication title -
jmir. journal of medical internet research/journal of medical internet research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.446
H-Index - 142
eISSN - 1439-4456
pISSN - 1438-8871
DOI - 10.2196/17945
Subject(s) - virtual reality , human–computer interaction , computer science , instructional simulation , immersion (mathematics) , multimedia , psychology , mathematics , pure mathematics
Background Education and learning are the most important goals of all universities. For this purpose, lecturers use various tools to grab the attention of students and improve their learning ability. Virtual reality refers to the subjective sensory experience of being immersed in a computer-mediated world, and has recently been implemented in learning environments. Objective The aim of this study was to analyze the effect of a virtual reality condition on students’ learning ability and physiological state. Methods Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used fractal theory to investigate their attention to the videos. Results The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos. Conclusions A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here