Premium
Study Designs and Tests for Comparing Resource Use and Availability II
Author(s) -
THOMAS DANA L.,
TAYLOR ERIC J.
Publication year - 2006
Publication title -
the journal of wildlife management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.94
H-Index - 111
eISSN - 1937-2817
pISSN - 0022-541X
DOI - 10.2193/0022-541x(2006)70[324:sdatfc]2.0.co;2
Subject(s) - pooling , selection (genetic algorithm) , resource (disambiguation) , statistics , population , computer science , logistic regression , mathematics , machine learning , demography , artificial intelligence , computer network , sociology
We review 87 articles published in the Journal of Wildlife Management from 2000 to 2004 to assess the current state of practice in the design and analysis of resource selection studies. Articles were classified into 4 study designs. In design 1, data are collected at the population level because individual animals are not identified. Individual animal selection may be assessed in designs 2 and 3. In design 2, use by each animal is recorded, but availability (or nonuse) is measured only at the population level. Use and availability (or unused) are measured for each animal in design 3. In design 4, resource use is measured multiple times for each animal, and availability (or nonuse) is measured for each use location. Thus, use and availability measures are paired for each use in design 4. The 4 study designs were used about equally in the articles reviewed. The most commonly used statistical analyses were logistic regression (40%) and compositional analysis (25%). We illustrate 4 problem areas in resource selection analyses: pooling of relocation data across animals with differing numbers of relocations, analyzing paired data as though they were independent, tests that do not control experiment wise error rates, and modeling observations as if they were independent when temporal or spatial correlations occurs in the data. Statistical models that allow for variation in individual animal selection rather than pooling are recommended to improve error estimation in population‐level selection. Some researchers did not select appropriate statistical analyses for paired data, or their analyses were not well described. Researchers using one‐resource‐at‐a‐time procedures often did not control the experiment wise error rate, so simultaneous inference procedures and multivariate assessments of selection are suggested. The time interval between animal relocations was often relatively short, but existing analyses for temporally or spatially correlated data were not used. For studies that used logistic regression, we identified the data type employed: single sample, case control (used‐unused), use‐availability, or paired use‐availability. It was not always clear whether studies intended to compare use to nonuse or use to availability. Despite the popularity of compositional analysis, we do not recommend it for multiple relocation data when use of one or more resources is low. We illustrate that resource selection models are part of a broader collection of statistical models called weighted distributions and recommend some promising areas for future development.