z-logo
open-access-imgOpen Access
Плазмон-активированный фёрстеровский перенос энергии в молекулярных системах
Author(s) -
Н.Х. Ибраев,
М.Г. Кучеренко,
Д.А. Темирбаева,
Е.В. Селиверстова
Publication year - 2022
Publication title -
optika i spektroskopiâ
Language(s) - English
Resource type - Journals
eISSN - 2782-6694
pISSN - 0030-4034
DOI - 10.21883/os.2022.05.52426.1-22
Subject(s) - nile red , förster resonance energy transfer , rhodamine b , rhodamine , fluorescence , acceptor , photochemistry , nanoparticle , plasmon , molecule , fluorescein , resonant inductive coupling , materials science , chemical physics , surface plasmon resonance , chemistry , analytical chemistry (journal) , nanotechnology , energy transfer , optoelectronics , optics , organic chemistry , photocatalysis , physics , condensed matter physics , catalysis
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein–nile red (NR) and rhodamine B–NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein–nile red pair than for the rhodamine B–nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here