
Нелинейный магнитооптический резонанс в парах -=SUP=-87-=/SUP=-Rb: влияние паразитных магнитных полей и интенсивности возбуждающего излучения на основные характеристики эффекта в ячейках с антирелаксационным покрытием
Author(s) -
Е.A. Алипиева,
Е.T. Таскова,
Г.Ц. Тодоров,
В. А. Полищук,
Т.А. Вартанян
Publication year - 2019
Publication title -
žurnal tehničeskoj fiziki
Language(s) - English
Resource type - Journals
eISSN - 1726-748X
pISSN - 0044-4642
DOI - 10.21883/os.2019.09.48188.vv97
Subject(s) - zeeman effect , excitation , degenerate energy levels , physics , polarization (electrochemistry) , amplitude , population , atomic physics , nonlinear system , density matrix , linear polarization , semiclassical physics , quantum mechanics , magnetic field , chemistry , laser , demography , sociology , quantum
The nonlinear Hanle effect is generally considered in the modern literature as a particular case of coherent population trapping (CPT) at degenerate Zeeman sublevels of the ground atomic state. The shape, amplitude, and sign of observed resonances and their dependence on the excitation parameters and observation geometry were investigated theoretically and experimentally in many studies because of the wide range of application of this effect. The sensitivity of Hanle resonances to the experimental conditions increases significantly in cells with antirelaxation coating, because the atomic ensemble retains its coherence after a large number of collisions with the cell walls. In this paper, the main attention is paid to the joint influence of the excitation radiation intensity and spurious magnetic fields on CPT resonances observed in fluorescence. The theoretical description is based on the numerical solution of an algebraic system of equations for density matrix $$\hat {\rho }$$ in the formalism of irreducible tensor operators. The parameters relating different polarization moments in each equation are visualized using the modified sparse matrix of the system. It is established by numerical simulation that the shape, width, amplitude, and sign of nonlinear magnetooptical resonances change nonmonotonically with a change in the parameters of the excitation radiation and atomic system. The presented theoretical results are in good agreement with the experimental data obtained under various conditions.