
Рентгеновские лазеры в потоках кластеров и в наноструктурированных мишенях
Author(s) -
Elena P. Ivanova
Publication year - 2019
Publication title -
žurnal tehničeskoj fiziki
Language(s) - English
Resource type - Journals
eISSN - 1726-748X
pISSN - 0044-4642
DOI - 10.21883/os.2019.07.47933.121-19
Subject(s) - ionization , atomic physics , laser , ion , electron , xenon , physics , cluster (spacecraft) , wavelength , water window , photoionization , perturbation theory (quantum mechanics) , perturbation (astronomy) , optics , nuclear physics , quantum mechanics , computer science , programming language
The paper presents a brief review of recent works concerning the modeling of X-ray lasers in cluster flows and in nanostructured targets. Calculations of the atomic characteristics are based on relativistic perturbation theory with a model potential of zero approximation. Two new results are discussed: (1) it is shown that a subpicosecond X-ray laser with λ = 41.8 nm formed in a xenon cluster flow can serve as an alternative to a free-electron laser and (2) in heavy Ni-like ions ( Z ≥ 60), the ionization of ions and recombination of electrons are balanced at electronic temperatures ≥1500 eV; thus, the state of a Ni-like ion is quasi-steady-state. The inversions of many transition levels of an X-ray laser are also quasi-steady-state. The possibility of experimental observation of X-ray lasers based on 3 p ^54 d ^104 p [ J = 0] – 3 p ^63 d ^94 p [ J = 1] intrashell transitions in Gd^36+ with wavelengths in the water window region is discussed.