z-logo
open-access-imgOpen Access
Отрицательная обратная связь по току в ускоряющем промежутке в источниках электронов с плазменным катодом
Author(s) -
М.С. Воробьёв,
П.В. Москвин,
В.И. Шин,
Т.В. Коваль,
В.Н. Девятков,
С.Ю. Дорошкевич,
Н.Н. Коваль,
М.С. Торба,
К.Т. Ашурова
Publication year - 2022
Publication title -
žurnal tehničeskoj fiziki
Language(s) - English
Resource type - Journals
eISSN - 1726-748X
pISSN - 0044-4642
DOI - 10.21883/jtf.2022.06.52519.14-22
Subject(s) - cathode , plasma , anode , atomic physics , cathode ray , materials science , electron , common emitter , electric arc , current (fluid) , ion , electron gun , electrode , chemistry , optoelectronics , physics , nuclear physics , organic chemistry , thermodynamics
Using the example of an electron source with a plasma cathode based on a low-pressure arc discharge with grid stabilization of the cathode/emission plasma boundary and an open anode/beam plasma boundary, a mechanism is described for increasing the electrical strength of a high-voltage accelerating gap by introducing a series negative current feedback (NCF) in the accelerating interval, which makes it possible to level out uncontrolled bursts of the beam current during its pulse. The introduction of NCF is achieved by using a special electrode in the space of the plasma emitter connected through a resistance to the anode of the arc discharge, and the main task of which is to intercept accelerated ions penetrating into the emitter from the high-voltage accelerating gap, due to which the current of electron emission from the arc discharge plasma decreases by a value proportional to the ion current in the accelerating gap. Since most sources and accelerators of electrons with plasma cathodes based on discharges of various types have a similar principle of operation, the use of this method will not only expand the limiting parameters of the generated electron beams, but also increase the stability of the operation of such electron sources, and, accordingly, beam irradiation of various materials and products.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here