z-logo
open-access-imgOpen Access
К 125-летию со дня рождения лауреата Нобелевской премии академика Николая Николаевича Семенова Цепной механизм воздействия добавок дихлордифторметана на горение водорода и метана в кислороде и воздухе
Author(s) -
Н.М. Рубцов,
Б.С. Сеплярский,
А.П. Калинин,
К.Я. Трошин
Publication year - 2021
Publication title -
žurnal tehničeskoj fiziki
Language(s) - English
Resource type - Journals
eISSN - 1726-748X
pISSN - 0044-4642
DOI - 10.21883/jtf.2021.06.50857.269-20
Subject(s) - methane , combustion , hydrogen , chemistry , radical , photochemistry , ignition system , inorganic chemistry , organic chemistry , thermodynamics , physics
The effect of difluorodichloromethane additives on spark initiated combustion of hydrogen and methane in air and oxygen at atmospheric and reduced pressures was investigated. It has been found that the ignition concentration limit of the premixed hydrogen-air mixture in the presence of difluorodichloromethane at 1 atm exceeds 10%, while it has been shown for the first time that the ignition limit of the premixed methane-air mixture is 1% of difluorodichloromethane, which is thereby the most effective methane combustion inhibitor. This also means that the active combustion centers of hydrogen and methane, which determine the development of combustion, have a different chemical nature. Thus, the reaction including a difluorodichloromethane molecule resulting in the formation of HF (v = 2.3) during methane combustion should include a step involving the active methane combustion intermediate. Using hyperspectrometers of the visible and near-infrared ranges in the products of the oxidation reactions of hydrogen and methane in the presence of difluorodichloromethane, vibrationally excited HF molecules (v = 2.3) were first discovered. For the first time, it was found that HF molecules (v = 3) during methane combustion are formed at the moment when the maximum rate of chemical conversion is achieved, that is, reactions involving inhibitor molecules compete with the process of development of reaction chains. Keywords: chain burning, inhibition, methane, hydrogen, dichlorodifluoromethane, hyperspectrometer, high-speed color filming, radicals, excited particles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here