
Влияние напряжения смещения и скорости осаждения на структуру и коэрцитивность пленок NiFe
Author(s) -
А.С. Джумалиев,
C.Л. Высоцкий,
В.К. Сахаров
Publication year - 2020
Publication title -
fizika tverdogo tela
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2020.12.50221.163
Subject(s) - coercivity , materials science , analytical chemistry (journal) , grain size , sputter deposition , deposition (geology) , supercritical fluid , condensed matter physics , sputtering , nuclear magnetic resonance , thin film , chemistry , nanotechnology , metallurgy , physics , paleontology , organic chemistry , chromatography , sediment , biology
Influence of the bias voltage Ub and the deposition rate on the structure, grain size D, and coercivity Hc of NiFe films with the thickness d from 30 to 980 nm, grown onto Si / SiO2 substrates by DC magnetron sputtering, was studied. In the case Ub = 0, the decrease of from ≈ nm/min to ≈ 7 nm/min is accompanied by the increase of the critical film thickness dcr from dcr ≈ 220 nm to dcr ≈ 270 nm. In this case, Hc in the films with d < dcr is characterized by the dependence Hc ~ D6 and varies from ~ 1 to ~ 20 Oe. In the case of Ub = -100 V, the effect of the deposition rate on the coercivity is much more noticeable. At ν = 7 and 14 nm / min, the films demonstrate soft magnetic properties (Нс ≈ 0.15 - 1.4 Oe) and the absence of dcr for the entire range of studied thicknesses. The films obtained at ν = 21 and 27 nm / min turn into the “supercritical” state at d ≥ dcr ≈ 520 nm, and, in the region d < dcr, they are characterized by the dependence Hc ~ D3 and by the increase of coercivity from ~ 0.35 to ~ 10 Oe.