z-logo
open-access-imgOpen Access
Частота и быстродействие спинового вентиля с планарной анизотропией слоев
Author(s) -
Ю.А. Юсипова
Publication year - 2020
Publication title -
физика твердого тела
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2020.09.49754.29h
Subject(s) - magnetization , precession , magnetization dynamics , condensed matter physics , ferromagnetism , spin valve , anisotropy , spin (aerodynamics) , materials science , physics , magnetic field , optics , quantum mechanics , thermodynamics
The dynamics of the magnetization vector in the free layer of a layered spin-valve structure was simulated. As materials for the free and fixed layers, six magnetically soft ferromagnets with longitudinal anisotropy were considered. The types of magnetization dynamics that are of practical interest for MRAM and HMDD (switching of the magnetization vector), STNO (stable precession of the magnetization vector), and the base element PSL (switching of the magnetization vector with two probable outcomes) were highlighted. The ranges of currents and fields corresponding to these operating modes of the spin valve were calculated. The numerical calculations of the switching time showed that, among the considered materials for the MRAM cell, the most suitable is Co80Gd20 alloy, while for the HMDD read head, it is Fe60Co20B20. As a result of the precession frequency calculations, it was concluded that the Fe60Co20B20 alloy is optimal for the STNO ferromagnetic layers. For the implementation of PSL, the best switching characteristics were demonstrated by the Co93Gd7 alloy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom