
Атомная структура и энергия когезии изолированных кластеров SiC
Author(s) -
Л.И. Овсянникова
Publication year - 2020
Publication title -
fizika tverdogo tela
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2020.06.49360.633
Subject(s) - fullerene , cluster (spacecraft) , cohesion (chemistry) , density functional theory , ab initio , materials science , ab initio quantum chemistry methods , molecular physics , atomic physics , chemical physics , computational chemistry , chemistry , molecule , physics , organic chemistry , computer science , programming language
The first-principle calculations of the atomic and electronic structures and cohesion energy of fullerene-like Si60C60 clusters have been carried out. A model of two-layer fullerene-like Si12C12@Si48C48 cluster with mixed sp2/sp3 bonds has been built for the first time. Ab initio calculations are performed in terms of the electron density functional and the hybrid B3LYP functional theory. The stability and the energy gap width of the clusters are estimated in the dependence on its geometry. It is shown that cohesion energy of two-layer fullerene-like Si12C12@Si48C48 cluster exceeds the cohesion energy of the other fullerene-like clusters with the same number of atoms, but is inferior to the SiC cluster with sphalerite structure. The relaxation of two-layer cluster is shift on outward the surface layer occurs.