z-logo
open-access-imgOpen Access
Подвижность носителей заряда в монокристалле и нанокерамике суперионного проводника Pb-=SUB=-1-x-=/SUB=-Sn-=SUB=-x-=/SUB=-F-=SUB=-2-=/SUB=- (x=0.2)
Author(s) -
Н. И. Сорокин
Publication year - 2019
Publication title -
физика твердого тела
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2019.11.48406.419
Subject(s) - isostructural , nanoceramic , single crystal , materials science , ionic conductivity , analytical chemistry (journal) , electron mobility , solid solution , conductivity , crystallography , crystal (programming language) , charge carrier , crystal structure , chemistry , ceramic , electrolyte , metallurgy , optoelectronics , electrode , chromatography , computer science , programming language
A crystallophysical model of ion transfer in the superionic Pb_1 – _ x Sn_ x F_2 conductor with a fluorite (CaF_2) structure is proposed. The concentration dependence of the ionic conductivity of Pb_1 – _ x Sn_ x F_2 single crystals and poly- and nanocrystals is analyzed. The single-crystal form of the superionic conductor is characterized by the highest conductivity. The mobility and concentration of anionic charge carriers in a single crystal and ceramics of Pb_1 – _ x Sn_ x F_2 ( x = 0.2) is calculated on the basis of structural and electrophysical data. The mobility of carriers μ_mob = 2.5 × 10^–6 cm^2/s V (at 293 K) in a single crystal is seven times higher than in nanoceramic. The concentration of carriers n _mob = 1.7 × 10^21 and 3.6 × 10^21 cm^3 (4.5 and 9.5% of the total number of anions) for a single crystal and nanoceramic, respectively. The comparison of isostructural Pb_0.8Sn_0.2F_2, Pb_0.67Cd_0.33F_2, and Pb_0.9Sc_0.1F_2.1 single crystals shows that anionic carriers have a maximum mobility in the β-PbF_2 and SnF_2 based solid solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom