
Исследование фазовых переходов и критических свойств модели Гейзенберга на объемно-центрированной кубической решетке
Author(s) -
А. К. Муртазаев,
М. К. Рамазанов,
D. R. Kurbanova,
М. А. Магомедов,
М.К. Бадиев,
М.К. Мазагаева
Publication year - 2019
Publication title -
fizika tverdogo tela
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2019.06.47695.373
Subject(s) - statistical physics , critical exponent , renormalization group , scaling , monte carlo method , antiferromagnetism , k nearest neighbors algorithm , physics , histogram , phase transition , replica , universality (dynamical systems) , condensed matter physics , mathematics , mathematical physics , statistics , computer science , geometry , image (mathematics) , artificial intelligence , art , visual arts
The phase transitions and critical phenomena of the three-dimensional antiferromagnetic Heisenberg model on a body-centered cubic lattice with next and next-nearest neighbor interactions are studied using the replica Monte Carlo algorithm. Investigations are carried out for relations of exchange interaction values of next and next-nearest neighbors in the range of k values [0.0, 0.6]. A behavior of phase transitions is analyzed by the histogram method. A whole set of main static critical exponents is estimated within the finite-size scaling theory. The universality class of the model critical behavior is shown to be unchanged in the considered interval of k value.