z-logo
open-access-imgOpen Access
Неуниверсальность частотной зависимости проводимости неупорядоченных наногранулированных систем
Author(s) -
М.А. Ормонт,
И.П. Звягин
Publication year - 2018
Publication title -
fizika tverdogo tela
Language(s) - English
Resource type - Journals
eISSN - 1726-7498
pISSN - 0367-3294
DOI - 10.21883/ftt.2018.12.46721.156
Subject(s) - conductivity , universality (dynamical systems) , condensed matter physics , frequency dependence , attenuation , physics , electrical resistivity and conductivity , linear response theory , statistical physics , exponent , materials science , quantum mechanics , nuclear magnetic resonance , linguistics , philosophy
The real part of the high-frequency phononless conductivity is calculated in the pair approximation for a disordered array of densely packed spherical nanogranules. The generalization of the theory of phononless conductivity for systems with point impurities to systems with localized finite sizes (arrays of nanogranules or quantum dots) reveals that the high-frequency conductivity depends on the distribution function of the distances between the surfaces of granules P ( w ). This is expected to cause the discrepancy of the real part of the conductivity σ_1(ω) from the linear frequency dependence. In the vicinity of the frequency ω ~ ω_ c = 2 I _0/ $$\hbar $$ (here I _0 is a preexponential factor of the resonance integral) for disordered granulated systems is likely to deviate from the universality σ_1(ω) ~ ω^ s ( s ≈ 1) due to the attenuation of the frequency dependence σ_1(ω) of the conductivity and its nonmonotonicity. The nonmonotonicity of σ_1(ω) must arise at lower frequencies as a result of decreased preexponential factor I _0 of the resonance integral with increasing granule size.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here