Open Access
Влияние условий формирования кремниевых диодов на их обратные токи
Author(s) -
С.В. Булярский,
Е.П. Кицюк,
А.В. Лакалин,
М.А. Сауров,
В.В. Светухин,
А.П. Орлов,
Г.А. Рудаков
Publication year - 2022
Publication title -
fizika i tehnika poluprovodnikov
Language(s) - English
Resource type - Journals
eISSN - 1726-7315
pISSN - 0015-3222
DOI - 10.21883/ftp.2022.05.52354.9807
Subject(s) - diode , recombination , epitaxy , materials science , substrate (aquarium) , diffusion , optoelectronics , silicon , layer (electronics) , depletion region , p–n junction , chemistry , nanotechnology , semiconductor , physics , biochemistry , oceanography , geology , gene , thermodynamics
In this work, a study was made of the influence of silicon diode manufacturing technology on the emergence of generation and recombination centers. The electrical characteristics of p-n junctions formed in different ways on n-type silicon substrates were compared: a) the p-type layer was created by the diffusion method; b) the p-type layer was formed by ion implantation into an epitaxial n-layer preliminarily grown on the substrate; c) two n- and p-type epitaxial layers were successively deposited on the substrate. It has been established that for diodes based on a double epitaxial layer, the direct and reverse current-voltage characteristics (CVC) are due to the diffusion mechanism, and the structures themselves have a low concentration of recombination centers. At the same time, in diodes based on the diffusion method and ion implantation, the CVCs are due to the generation-recombination mechanism. With reverse bias, electron-phonon processes play a significant role in the formation of the CVC, and with forward bias, carrier recombination in the region of the space charge of the p-n junction. The concentrations and energies of recombination centers have been determined.