z-logo
open-access-imgOpen Access
Мощность насыщения оптического усилителя на основе самоорганизующихся квантовых точек
Author(s) -
А.Е. Жуков,
Н.В. Крыжановская,
Э.И. Моисеев,
А.М. Надточий,
Ф.И. Зубов,
М.В. Фетисова,
М.В. Максимов,
Н.Ю. Гордеев
Publication year - 2021
Publication title -
fizika i tehnika poluprovodnikov
Language(s) - English
Resource type - Journals
eISSN - 1726-7315
pISSN - 0015-3222
DOI - 10.21883/ftp.2021.09.51302.9669
Subject(s) - saturation (graph theory) , physics , saturation current , quantum dot , photon , ground state , current density , semiconductor , computational physics , rate equation , atomic physics , quantum mechanics , mathematics , voltage , combinatorics , kinetics
Gain saturation in a semiconductor optical amplifier with an array of quantum dots was studied analytically and by numerical simulation on the basis of an analysis of the rate equations. It is shown that, at a moderate injection level, the saturation power increases in proportion to the current density, and then reaches its maximum value, limited by the rate of capture of charge carriers to the ground state and by the number of quantum dots interacting with photons. Expressions are proposed that allow an explicit description of the dependence of the saturation power on the current and its relationship with the internal parameters of the active region.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here