
Синтез и фотолюминесценция наноразмерных структур на основе сульфидов цинка, кадмия и марганца в полиакрилатной матрице
Author(s) -
А.А. Исаева,
В.П. Смагин
Publication year - 2020
Publication title -
fizika i tehnika poluprovodnikov
Language(s) - English
Resource type - Journals
eISSN - 1726-7315
pISSN - 0015-3222
DOI - 10.21883/ftp.2020.12.50232.9475
Subject(s) - photoluminescence , photoluminescence excitation , materials science , luminescence , excited state , ion , doping , zinc , absorption (acoustics) , excitation , optoelectronics , analytical chemistry (journal) , atomic physics , chemistry , physics , composite material , organic chemistry , quantum mechanics , chromatography , metallurgy
Photoluminescence of nanoscale structures based on zinc, cadmium and manganese sulfides depending on the conditions of synthesis and doping in the medium (poly)methylmethacrylate (PMMA). Photoluminescence excitation is associated with interband transitions of electrons in the semiconductor structures, absorption of optical radiation energy by defects in the crystal structure, as well as with the transfer of energy to the excited energy levels of Mn2+ ions. Luminescence occurs as a result of recombination processes at the levels of defects in the structure of the surface of particles and 4T1 → 6A1 transitions between the proper energy levels of Mn2+ ions. Based on changes in the photoluminescence spectra and photoluminescence excitation of PMMA/(Zn,Cd,Mn)S compositions, assumptions are made about the structure of particles. It is shown that their photoluminescence is affected by the distribution of Mn2+ ions in the structure of layers and on the surface of particles.