z-logo
open-access-imgOpen Access
Модель термополевой нестабильности p-МОП-транзисторов при отрицательном смещении затвора
Author(s) -
О.В. Александров
Publication year - 2020
Publication title -
физика и техника полупроводников
Language(s) - English
Resource type - Journals
eISSN - 1726-7315
pISSN - 0015-3222
DOI - 10.21883/ftp.2020.02.48901.9111
Subject(s) - negative bias temperature instability , materials science , silicon , substrate (aquarium) , electron , gate oxide , transistor , ion , hydrogen , oxide , analytical chemistry (journal) , mosfet , optoelectronics , voltage , electrical engineering , chemistry , physics , oceanography , organic chemistry , quantum mechanics , chromatography , engineering , metallurgy , geology
A new quantitative model of the negative-bias temperature instability (NBTI) of p -MOS (metal-oxide-semiconductor) transistors is developed. The model is based on the reaction of the depassivation of surface states at the Si–SiO_2 interphase boundary (IPB) and hydrogen-containing hole traps near the Si–SiO_2 IPB by positively charged hydrogen ions H^+, accumulated in the p ^+-type inversion layer of the silicon substrate. The dependences of the surface and space charges in p -MOS transistors on the NBTI time are controlled by the kinetics of H^+-ion diffusion and drift from the silicon substrate to the Si–SiO_2 IPB. The effect of the gate voltage on the NBTI is explained by the effect of the electric-field strength on the H^+ ion segregation coefficient at the Si–SiO_2 IPB. The relaxation of positive space charge introduced into the gate dielectric during NBTI is described by the tunnel discharge of oxide traps by silicon-substrate electrons.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom