z-logo
open-access-imgOpen Access
Human-robot Interaction in Collaborative Robotic Systems
Author(s) -
Rinat Galin,
Vladimir Serebrenny,
Gleb Tevyashov,
Alexander Shiroky
Publication year - 2021
Publication title -
izvestiâ ûgo-zapadnogo gosudarstvennogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 2686-6757
pISSN - 2223-1560
DOI - 10.21869/2223-1560-2020-24-4-180-199
Subject(s) - workspace , robot , teamwork , robotics , computer science , artificial intelligence , human–robot interaction , human–computer interaction , field (mathematics) , task (project management) , collaborative learning , identification (biology) , knowledge management , engineering , systems engineering , botany , mathematics , pure mathematics , political science , law , biology
Purpose or research is to find solvable tasks for increasing the effectiveness of collaborative interaction between people and robots in ergatic robotic systems, or, in other words, in collaborative robotic systems. Methods. A comprehensive analysis of works published in highly rated peer-reviewed open-access scientific publications was carried out to achieve this goal. Main terms and concepts of collaborative robotics are described in § 1 and their current understanding in the research community is also described. The structure of workspaces in interaction zone of a person and robot is described. The criteria for assigning robot to the class of collaborative ones are also described. The criteria for safe interaction of a person and robot in a single workspace is described in § 2. Various grounds for classifying human-robot interactions in collaborative RTAs are described in § 3. Results. A significant part of published works about collaborative robotics is devoted to the organization of safe man and robot interaction. Less attention is paid to the effectiveness improvement of such interaction. An up-to-date task in the problem of efficiency improvement of collaborative robotic systems is the identification of tasks that have already been solved in other areas - in particular, in the field of organizational systems management. The possibility of using the term "team" for collaborative robots in a collaborative PTC is stated in § 4. A formal problem setting of optimal distribution in teamwork of collaborative robots, similar to the problem of heterogeneous team formation in the theory of organizational systems management is proposed in § 5. Conclusions. Proposed task setting of optimal distribution of works in collaborative robots’ team shows possibility of using results obtained in group of mathematical models of commands formation and functioning for control of collaborative robotic systems in order to increase efficiency of people and robots interaction. It is prospectively to continue the search for adapting models and governance mechanisms to the theory of organizational system management and integrated activities methodology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here