z-logo
open-access-imgOpen Access
MORPHOLOGY AND ELEMENTAL COMPOSITION OF COBALT-CHROMIUM POUDERS-ALLOYS PRODUCED FOR ADDITIVE TECHNOLOGIES BY ELECROEROSION DISPERSION OF METAL DISCARD IN WATER
Author(s) -
Е. В. Агеева,
A. Yu. Altukhov,
А. G. Ivakhnenko
Publication year - 2017
Publication title -
izvestiâ ûgo-zapadnogo gosudarstvennogo universiteta
Language(s) - English
Resource type - Journals
eISSN - 2686-6757
pISSN - 2223-1560
DOI - 10.21869/2223-1560-2017-21-4-21-31
Subject(s) - scrap , materials science , alloy , distilled water , chromium , cobalt , dispersion (optics) , metallurgy , metal , chemical engineering , chemistry , physics , optics , chromatography , engineering
Extensive use of electroerosion dispersion (EED) method to recycle metal discard into powders for their re-use in additive technologies is limited by a lack of complete data on the effects of the initial composition, production modes and media on the properties of produced powders and their application technologies. Hence there is a need in new re-use technologies for alloy-powder produced from nichrome scrap and in the assessment of their efficiency, which in its turn requires integrated theoretical and experimental studies. The goal of the presented work was to investigate morphology and element composition of cobalt-chromium alloy-powders that had been produced for additive technologies by eletroerosion dispersion of CCh alloy in distilled water. Research and test material was cobalt-chromium scrap of “TSELIT” alloy grade. The working medium was distilled water. To produce cobalt-chromium powders by electroerosion dispersion an EED plant for current conducting materials. Metal scrap was charged into the reactor filled with working medium, distilled water; the process was run at the following parameters: energy discharge capacitor capacity was 28 mcF, voltage 110 V pulse frequency 100 Hz. The results of the research of the morphology and component composition of cobalt-chromium powder-alloys that had been produced for additive technologies by electroerosion dispersion of cobalt-chromium TSELIT alloy scrap in distilled water demonstrated that the majority of particles in the powder had regular sphere or oval shape, with large amount of surface oxygen, which required additional chemical treatment before use in additive technologies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here