
Molecular conductors composed from Organic-Transistor Materials
Author(s) -
Tomofumi Kadoya
Publication year - 2020
Publication title -
impact
Language(s) - English
Resource type - Journals
eISSN - 2398-7081
pISSN - 2398-7073
DOI - 10.21820/23987073.2020.4.38
Subject(s) - transistor , electrical conductor , doping , organic semiconductor , materials science , thermal conduction , field effect transistor , optoelectronics , organic electronics , engineering physics , electrical engineering , nanotechnology , engineering , voltage , composite material
Assistant Professor Tomofumi Kadoya is part of a team within the Graduate School of Material Science at the University of Hyogo in Japan. He is engaged with a range of different investigations related to conductive organic materials. One of the main focuses of Kadoya's research is organic transistors and organic charge-transfer (CT) complexes. CT complexes achieve conductivity by chemical doping but in organic transistors, conduction carriers are generated by field effect, where an electric field is used to control the flow of current. Among the many goals of the research, Kadoya and his team want to increase the methods and types of organic doping.