
Green Synthesis of Polymer-Capped Copper Nanoparticles Using Ocimum sanctum Leaf Extract: Antibacterial and Antioxidant Potential
Author(s) -
Chirag Makvana
Publication year - 2021
Publication title -
bioscience biotechnology research communications
Language(s) - English
Resource type - Journals
eISSN - 2321-4007
pISSN - 0974-6455
DOI - 10.21786/bbrc/14.4.67
Subject(s) - nanoparticle , fourier transform infrared spectroscopy , copper , nuclear chemistry , antibacterial activity , materials science , polymer , selected area diffraction , dpph , particle size , nanotechnology , chemistry , chemical engineering , transmission electron microscopy , organic chemistry , antioxidant , biology , bacteria , engineering , genetics
The advancement of green nanotechnology has piqued the interest of researchers into the environmentally responsible production of nanoparticles. Conventionally used chemical methods for the synthesis of the nanoparticles have shown adverse effect on environment due to the use of highly toxic chemicals. They are also expensive as they utilize costly chemicals as a reducing and capping agent. Use of plant extract can be an environment friendly and cost-effective approach for the synthesis of nanoparticles. Copper is the metal which humans utilize from the ancient time period and it doesn’t show any adverse effect on humankind as well as on environment. Leaf extract of Ocimum sanctum was employed with CuSO4 (1:9, v/v) to synthesize stable copper nanoparticles (CuNPs) that were then functionalized with Polyvinyl Pyrrolidone (PVP) polymer. Characterization of synthesized copper nanoparticles was carried out using UV–Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Synthesized CuNPs were subjected against the human pathogenic bacterial strain to evaluate their antibacterial potency. Antioxidative characteristics of CuNPs were analyzed using DPPH free radical scavenging activity. The UV–visible spectra of CuNPs showed unique peaks at 322 and 247 nm indicates the stable formation of nanoparticles. X-ray diffraction pattern suggest the face cubic centered (FCC) structure of copper nanoparticles. FTIR analysis revealed the presence of biomolecules attached on the surface of CuNPs. TEM analysis proven the synthesis of spherical shaped CuNPs with the average particle size of 73.50 ± 1.78 nm. Biosynthesized CuNPs showed maximum zone of inhibition against E. coli which was tends to be 20 mm. 51.48 % of DPPH free radical scavenging activity was observed by synthesized PVP coated CuNPs. As a result, this technology can be employed for the quick and environmentally friendly biosynthesis of stable copper nanoparticles with antibacterial and antioxidant activities with the size range from 10 to 100 nm, implying their potential application in the healthcare, clinical as well as pharmaceutical fields