z-logo
open-access-imgOpen Access
Phytoremediation Potential of Flowering Plants in Relation to Copper
Author(s) -
Svetlaikolaevna Vityaz
Publication year - 2021
Publication title -
bioscience biotechnology research communications
Language(s) - English
Resource type - Journals
eISSN - 2321-4007
pISSN - 0974-6455
DOI - 10.21786/bbrc/14.4.60
Subject(s) - white mustard , phytoremediation , chernozem , agronomy , chemistry , copper , cadmium , environmental chemistry , perennial plant , environmental science , biology , heavy metals , soil water , organic chemistry , soil science
Heavy metals such as cadmium, chromium, nickel, mercury, lead, copper, zinc and others are among the priority environmental pollutants. Determination of their content in its main subsystems is an obligatory component in environmental monitoring and certification of agricultural products. On the other hand, all metals are natural components of soil-forming rocks, and some metals are classified as biogenic microelements, and their absence provokes functional disorders in living organisms. This article describes the results of studying the phytoremediation potential of flowering plants in relation to copper ions under laboratory conditions. The following flowering plants were selected as test crops: tansy phacelia, white mustard, small-flowered marigolds and a mixture of cereal grasses consisting of red fescue, perennial ryegrass and bluegrass in a ratio of 40%, 50%, 10%, respectively. Within the experiment, copper ions in concentrations of 2 and 10 maximum permissible concentration (MPC) were introduced into the soil sampled from the territory of agricultural lands (leached medium-thick heavy loamy chernozem with a high level of humus, mobile phosphorus and exchangeable potassium and a low level of nitrate nitrogen, copper in gross and mobile forms). It was found that all plants selected as test crops are capable of accumulating copper ions from the soil to varying degrees, which makes it possible to use them in phytoremediation of agricultural lands planned for organic farming. The ability to accumulate copper ions increases in the following order: white mustard < small-flowered marigolds < tansy phacelia < mixture of cereal grasses. The maximum effect of soil phytoremediation was revealed in the variant with a mixture of cereal grasses. When they are grown, the content of copper ions in the soil with the introduction of 2 MPC decreases by 38.8%, with the introduction of 10 MPC the concentration decreases by 47.8%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here