
Development and Optimization of Floating Microspheres in Amethopterin
Author(s) -
Raghav Mishra
Publication year - 2021
Publication title -
bioscience biotechnology research communications
Language(s) - English
Resource type - Journals
eISSN - 2321-4007
pISSN - 0974-6455
DOI - 10.21786/bbrc/14.4.26
Subject(s) - bioavailability , amethopterin , polyvinyl alcohol , biomedical engineering , materials science , chemistry , drug delivery , chromatography , dosage form , chemical engineering , nanotechnology , pharmacology , surgery , organic chemistry , medicine , methotrexate , engineering
Due to the complexity of gastric emptying, as well as its considerable variability, the in vivo efficacy of drug delivery devices cannot be predicted. When it pertains to drugs with an absorption window in the upper small intestine, a controlled drug delivery system with a longer residence period in the stomach may be of considerable practical significance. Recent developments have shown that floating microspheres are particularly well suited for mixing sustained and delayed releases to achieve a variety of release models with a minimal risk of dumping. The aim of present investigation is to develop and analyze the floating microspheres of amethopterin, which after oral administration could increase the gastric residence time and enhance the bioavailability of the drug by sustained release and minimize the dose dependent side effects as well as improves patient compliance. Floating microspheres of ethyl cellulose, Polyvinyl alcohol and polyvinyl pyrrolidone-K90 were formulated by emulsification solvent evaporation technique. The various parameters of prepared microspheres were studied for SEM, flow properties, buoyancy, yield, percent drug loading, in vitro dissolution studies, stability in different pH and FTIR studies. Microspheres prepared with different concentrations of polymers were spherical in shape with smooth surface. The size of microspheres was in range of 256.02 µm and 362.84 µm. Good drug entrapment and buoyancy were observed for formulation F2. The in vitro drug release after 6h was found to be in range from 58.15% to 96.28%. It was established that the newly created floating microspheres of Amethopterin provide an appropriate and practical solution for the sustained release of medication over a longer period of time, resulting in increased oral bioavailability, effectiveness, as well as better patient compliance.