Open Access
Ensuring electrical safety of power supply systems of electrified AC railways for highspeed lines
Author(s) -
А. Б. Косарев,
А. В. Барч,
Е. Н. Розенберг
Publication year - 2018
Publication title -
vestnik naučno-issledovatelʹskogo instituta železnodorožnogo transporta/vestnik naučno-issledovatelʹskogo instituta železnodorožnogo transporta
Language(s) - English
Resource type - Journals
eISSN - 2713-2560
pISSN - 2223-9731
DOI - 10.21780/2223-9731-2018-77-6-337-346
Subject(s) - catenary , track (disk drive) , ballast , voltage , line (geometry) , engineering , automotive engineering , electrical engineering , computer science , structural engineering , mechanical engineering , mathematics , geometry
Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.