z-logo
open-access-imgOpen Access
Una nueva forma del Teorema de Kantorovich para el método de Newton
Author(s) -
Leopoldo Paredes Soria,
Pedro Canales García
Publication year - 2013
Publication title -
tecnia
Language(s) - Spanish
Resource type - Journals
eISSN - 2309-0413
pISSN - 0375-7765
DOI - 10.21754/tecnia.v23i1.69
Subject(s) - humanities , physics , philosophy
Una nueva forma de convergencia de tipo Kantorovich para el me´todo de Newton es establecido para aproximarse localmente a una solucio´n u´nica de la ecuacio´n F (x) = 0 definido sobre un espacio de Banach. Se asume que el operador F es dos veces diferenciable Fre´chet, y que Fr, F rr satisface las condiciones de Lipschitz. Nuestra condicio´n de convergencia difiere de los me´todos conocidos y por lo tanto tiene un valor teo´rico y pra´ctico Palabras clave.-Operador lineal, Diferenciable Fre´chet, Sucesio´n convergente, Unicidad. ABSTRACTA new Kantorovich-type convergence theorem for Newton’s method is established for approximating a locally unique solution of an equation F (x) = 0 defined on a Banach space. It is assumed that the operator F is twice Fre´chet differentiable, and that Fr, F rr satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value. Keywords.-Linear operator, Differentiable Fre´chet, Convergent succession, Uniqueness.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here