z-logo
Premium
Flocculent Settling of Food Wastes
Author(s) -
Chowdhury Mohammad Monirul Islam,
Kim Mingu,
Haroun Basem Mikhaeil,
Nakhla George,
Keleman Michael
Publication year - 2016
Publication title -
water environment research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 73
eISSN - 1554-7531
pISSN - 1061-4303
DOI - 10.2175/106143016x14609975746640
Subject(s) - settling , particulates , wastewater , chemistry , nitrogen , settling time , environmental engineering , environmental science , pulp and paper industry , environmental chemistry , waste management , organic chemistry , engineering , control engineering , step response
  This study evaluated the flocculent settling in water and municipal wastewater (MWW) in a 10.6 ft deep column. A total of eight runs at three different testing conditions involving MWW alone, food waste (FW) alone, and FW in MWW (FW+MWW) were conducted. Total suspended solid (TSS), total BOD (TBOD), total COD (TCOD), total nitrogen (TN), and total phosphorous (TP) removal efficiencies after 3 hours of settling were 62%, 46%, 49%, 46% and 62% for FW, and 50%, 43%, 39%, 37% and 24% for MWW. Removal efficiencies of particulate COD (PCOD) and particulate BOD (PBOD) at the lowest surface overflow rate (SOR) of 1.1 m 3 /m 2 /hr corresponding to the longest settling time of 3 hours were 59% and 64% for FW, and 65% and 70% for FW with MWW samples. On the other hand, no significant variation between FW and FW with MWW was observed for PN removal after 3 hours of settling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here