z-logo
Premium
High Nitrite Buildup During Nitrification in a Rotating Disk Reactor
Author(s) -
Antileo Christian,
Roeckel Marlene,
Wiesmann Udo
Publication year - 2003
Publication title -
water environment research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 73
eISSN - 1554-7531
pISSN - 1061-4303
DOI - 10.2175/106143003x140935
Subject(s) - nitrite , continuous stirred tank reactor , nitrification , aeration , chemistry , bioreactor , oxygen , washout , denitrification , environmental engineering , nitrate , environmental chemistry , nitrogen , environmental science , organic chemistry , oceanography , geology
Incomplete nitrification with high nitrite accumulation has three practical advantages: lower oxygen consumption, less need for organics for denitrification, and lower sludge production during denitrification. Nitrification leading to high nitrite formation was experimentally studied in a continuous single rotating disk reactor (RDR) and compared to a modeled continuous completely stirred tank reactor (CSTR). The results of this model show that to accumulate nitrite greater than 50% at oxygen levels higher than 3.5 mg O 2 /L, pH levels higher than 8.5 and 9.0 are required for a CSTR with and without cell washout, respectively. For a CSTR without cell washout at pH 7 and 1 mg O 2 /L, it was predicted that a nitrite accumulation less than 5% could be reached. Conversely, for a partially submerged continuous RDR without any additional aeration supply (already at pH 7 and 1.3 mg O 2 /L), high nitrite accumulation (more than 75%) was achieved and the influence of pH from 7 to 9 was not significant. This difference is believed to be caused by mass transfer. In addition, nitrification was observed to occur under oxygen transport limitation for a totally submerged continuous RDR.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom