
Computational Methods Dedicated to Neurological Disorder Detection through Epistasis Analysis: A Review
Author(s) -
S. Priya,
R. Manavalan
Publication year - 2021
Publication title -
current chinese engineering science
Language(s) - English
Resource type - Journals
eISSN - 2665-9980
pISSN - 2665-9999
DOI - 10.2174/1573411016999201110101039
Subject(s) - epistasis , single nucleotide polymorphism , snp , genome wide association study , candidate gene , disease , biology , genetics , bioinformatics , neuroscience , medicine , gene , genotype , pathology
Background: Neurological disorders diseases such as ALS, Alzheimer’s, epilepsy, Parkinson’s Disease, Autism,Atrial Fibrillation, and Sclerosis affect the central nervous system, including the brain, nerves, spinal cords, muscles, andNeuromuscular joint. These disorders are investigated by detecting the genetic variations in Single Nucleotide Polymorphism (SNP) in Genome-Wide Association Studies (GWAS). In the human genome sequence, one SNP influence the effectsof another SNP. These SNP-SNP interactions or Gene-Gene interaction (Epistasis) significantly increases the risk of diseasesusceptibility to neurological disorders. Objective: The manual analyzes of various genetic interactions related to Neurological diseases are cumbersome. Hence,the computational system is effective for the discovery of Epistasis effects in Neurological syndromes. This study aims toexplore various techniques of statistical, machine learning, optimization, so far applied to find the epistasis effect for neurological-disorder. Conclusion: This study finds several genetic interactions models involving different loci, various candidate genes, and SNPinteractions involved in numerous neurological diseases. The gene APOE and its polymorphism increase Alzheimer's disease pathology. The gene GAB2 and its SNPs play a vital role in Alzheimer’s disease. The genes GABRA4, ITGB3, andSLC64A highly influence the genetic interactions for Autism disorder. In schizophrenia, the SNPs of NRG1 increases thedisease risk. The benefits, limitations, and issues of the various computational techniques implemented for epistasis evaluation of neurological disease are deeply discussed.