z-logo
open-access-imgOpen Access
Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application
Author(s) -
Jyotika Purohit,
Anirudha Chattopadhyay,
Basavaraj Teli
Publication year - 2020
Publication title -
current genomics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 64
eISSN - 1875-5488
pISSN - 1389-2029
DOI - 10.2174/1389202921999200525155711
Subject(s) - metagenomics , biodegradation , population , microbial population biology , biochemical engineering , microbiology and biotechnology , environmental pollution , biology , environmental science , bacteria , engineering , ecology , environmental protection , biochemistry , genetics , demography , sociology , gene
Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here