z-logo
open-access-imgOpen Access
The Role of &#945;5 GABA<sub>A</sub> Receptor Agonists in the Treatment of Cognitive Deficits in Schizophrenia
Author(s) -
Kathryn Gill,
Anthony A. Grace
Publication year - 2014
Publication title -
current pharmaceutical design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 159
eISSN - 1873-4286
pISSN - 1381-6128
DOI - 10.2174/1381612819666131216114612
Subject(s) - neuroscience , dopamine , schizophrenia (object oriented programming) , prefrontal cortex , allosteric regulation , hippocampus , gabaergic , gabaa receptor , ventral tegmental area , allosteric modulator , psychology , cognition , receptor , medicine , dopaminergic , psychiatry , inhibitory postsynaptic potential
Currently available pharmacotherapies for the treatment of schizophrenia are ineffective in restoring the disrupted cognitive function associated with this disorder. As such, there is a continued search for more viable novel drug targets. Engaging in cognitive behaviors is associated with distinct coordinated oscillatory activity across brain regions, in particular the hippocampus and prefrontal cortex. In schizophrenia patients, pathological alterations in the functionality of GABAergic interneurons in the PFC and HPC responsible for generating network oscillations are thought to contribute to impaired cognition. Destabilized GABAergic interneuron activity in the HPC is further associated with aberrant increases in HPC output and enhanced dopamine neuron activity. Consequently, drugs directed at restoring HPC function could impact both oscillatory activity along with dopamine tone. There is compelling evidence from animal models of schizophrenia that allosteric modulation of the α5 subunit of the GABA A receptor is a viable means of resolving aberrant dopamine system activity through indirect alteration of HPC output. Consequently, these compounds are promising for their potential in also ameliorating cognitive deficits attributed to dysfunction in HPC network activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here