
Polyisoprenylated Cysteinyl Amide Inhibitors: A Novel Approach to Controlling Cancers with Hyperactive Growth Signaling
Author(s) -
Nazarius S. Lamango,
Augustine T. Nkembo,
Elizabeth Ntantie,
Nada Tawfeeq
Publication year - 2021
Publication title -
current medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.934
H-Index - 174
eISSN - 1875-533X
pISSN - 0929-8673
DOI - 10.2174/0929867327666201111140825
Subject(s) - vinculin , rhoa , cdc42 , chemistry , paxillin , rac1 , signal transduction , cell growth , microbiology and biotechnology , cell migration , cancer cell , biochemistry , focal adhesion , cell , biology , cancer , genetics
Aberrant activation of monomeric G-protein signaling pathways drives some of the most aggressive cancers. Suppressing these hyperactivities has been the focus of efforts to obtain targeted therapies. Polyisoprenylated methylated protein methyl esterase (PMPMEase) is overexpressed in various cancers. Its inhibition induces the death of cancer cells that harbor the constitutively active K-Ras proteins. Furthermore, the viability of cancer cells driven by factors upstream of K-Ras, such as overexpressed growth factors and their receptors or the mutationally-activated receptors, is also susceptible to PMPMEase inhibition. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were thus designed to target cancers with hyperactive signaling pathways involving the G-proteins. The PCAIs were, however, poor inhibitors of PMPMEase, with K i values ranging from 3.7 to 20 μM. On the other hand, they inhibited cell viability, proliferation, colony formation, induced apoptosis in cells with mutant K-Ras and inhibited cell migration and invasion with EC 50 values of 1 to 3 μM. HUVEC tube formation was inhibited at submicromolar concentrations through their disruption of actin filament organization. At the molecular level, the PCAIs at 2 to 5 μM depleted monomeric G-proteins such as K-Ras, RhoA, Cdc42 and Rac1. The PCAIs also deplete vinculin and fascin that are involved in actin organization and function while disrupting vinculin punctates in the process. These demonstrate a polyisoprenylation-dependent mechanism that explains the observed PCAIs' inhibition of the proliferative, invasive and angiogenic processes that promote both tumor growth and metastasis.