z-logo
open-access-imgOpen Access
Downhole Vibration Monitoring and Control System
Author(s) -
Martin E Cobern
Publication year - 2007
Language(s) - English
Resource type - Reports
DOI - 10.2172/932225
Subject(s) - magnetorheological fluid , engineering , damper , vibration , drilling , mechanical engineering , structural engineering , physics , quantum mechanics
The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here